软件发布| 专题库| 优优资讯| 苹果专区| 安卓专区| 软件下载| 首页
优优资讯 电脑教程 安卓教程 安卓攻略 苹果教程 苹果攻略 新闻资讯
您的位置: 首页 > 优优资讯 > 新闻资讯 > 业界新闻 >

阿尔法狗围棋战赢得人类选手 却在计时上略有bug

时间:2016-06-29 来源:本站整理 我要评论

  大家知道人工智能阿尔法狗在围棋赛中赢了人类选手,之后便沸沸扬扬掀起了关于人工智能的热潮,谷歌的人工智能围棋系统也成为了全球学习的重要案例,但是追其根本,阿尔法狗的成功还是要归结于人工程序员。

  AlphaGo是DeepMind的两大神经网络之一。其技术包括监督学习(即研究人类棋手的棋谱),以及增强学习(自己与自己练习,并从中改进)。不过最新消息显示,有些东西AlphaGo无法通过学习去掌握。

  DeepMind研究总监索尔·格雷佩尔(Thore Graepel)表示,最终完成的AlphaGo系统非常善于发现,应当专注于棋盘的哪个区域。不过,AlphaGo并不擅长何时停止思考,完成落子。

阿尔法狗围棋战

  这带来了问题,因为顶级围棋赛事有着复杂的计时系统。例如,在与李世石的对局中,双方各有2小时的常规时间去落子,并在时间耗尽后有3次读秒机会。棋手可以选择在某一回合中启动读秒。但如果全部读秒时间耗尽,那么就会被判负。

  格雷佩尔表示:“人类能进行复杂的时间管理。在困难的局面下,他们会思考更长时间,而在简单的局面下,他们花的时间较少。我们试图让AlphaGo也能做到这点。”

  “时间是重要资源:我们思考某一步棋的时间越长,那么下法就可能越好。然而,时间是有限的。因此我们提出了一些方法,即如果算法在更长时间的思考后不会改变决策,那么我们可以探测出这点。”

  研究团队并未在AlphaGo的围棋知识中加入时间规则,而是引入了额外的限制。与核心引擎不同,时间算法是由人工设计的。

  不过,这仍完全基于算法。格雷佩尔表示:“通过评价系统,我们进行了优化。我们会比较不同的耗时曲线,例如在开始阶段用时较少,随后用时增多,或是开始用时较多,随后逐渐减少。我们测试了哪种方法效果最好。”

  因此,目前还不必担心机器抢走人类的工作,人类仍有工作要做,例如控制秒表。

用户评论

(已有0条评论)
表情
注:您的评论需要经过审核才能显示哦,请文明发言!
还没有评论,快来抢沙发吧!
快速检索
0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z